Early detection of pemetrexed-induced inhibition of thymidylate synthase in non-small cell lung cancer with FLT-PET imaging

نویسندگان

  • Xiao Chen
  • Yizeng Yang
  • Ian Berger
  • Urooj Khalid
  • Akash Patel
  • Jenny Cai
  • Michael D. Farwell
  • Corey Langer
  • Charu Aggarwal
  • Steven M. Albelda
  • Sharyn I. Katz
چکیده

Inhibition of thymidylate synthase (TS) results in a transient "flare" in DNA thymidine salvage pathway activity measurable with FLT ([18F]thymidine)-positron emission tomography (PET). Here we characterize this imaging strategy for potential clinical translation in non-small cell lung cancer (NSCLC). Since pemetrexed acts by inhibiting TS, we defined the kinetics of increases in thymidine salvage pathway mediated by TS inhibition following treatment with pemetrexed in vitro. Next, using a mouse model of NSCLC, we validated the kinetics of the pemetrexed-mediated "flare" in thymidine salvage pathway activity in vivo using FLT-PET imaging. Finally, we translated our findings into a proof-of-principle clinical trial of FLT-PET in a human NSCLC patient. In NSCLC cells in vitro, we identified a burst in pemetrexed-mediated thymidine salvage pathway activity, assessed by 3H-thymidine assays, thymidine kinase 1 (TK1) expression, and equilibrative nucleoside transporter 1 (ENT1) mobilization to the cell membrane, that peaked at 2hrs. This 2hr time-point was also optimal for FLT-PET imaging of pemetrexed-mediated TS inhibition in murine xenograft tumors and was demonstrated to be feasible in a NSCLC patient. FLT-PET imaging of pemetrexed-induced TS inhibition is optimal at 2hrs from therapy start; this timing is feasible in human clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early detection of thymidylate synthase resistance in non-small cell lung cancer with FLT-PET imaging

Introduction Inhibition of thymidylate synthase (TS) results in a transient compensatory "flare" in thymidine salvage pathway activity measureable with 18F-thymidine (FLT)- positron emission tomography (PET) at 2hrs. of therapy which may predict non-small cell lung cancer (NSCLC) sensitivity to TS inhibition. Materials and Methods Resistance to TS inhibition by pemetrexed was induced in NSCLC...

متن کامل

Pemetrexed Induced Thymidylate Synthase Inhibition in Non-Small Cell Lung Cancer Patients: A Pilot Study with 3′-Deoxy-3′-[18F]fluorothymidine Positron Emission Tomography

OBJECTIVES Pemetrexed is a thymidylate synthase (TS) inhibitor and is effective in non-small cell lung cancer (NSCLC). 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT), a proliferation marker, could potentially identify tumor specific TS-inhibition. The aim of this study was to investigate the effect of pemetrexed-induced TS-inhibition on ¹⁸F-FLT uptake 4 hours after pemetrexed administration in meta...

متن کامل

Inhibition of miR-22 enhanced the efficacy of icotinib plus pemetrexed in a rat model of non-small cell lung cancer

Objective(s): To investigate the role of miR-22 in the efficacy of combined icotinib (BPI-2009H) and pemetrexed (LY-231514) on tumor growth and apoptosis in rats with non-small cell lung cancer (NSCLC).Materials and Methods: Rats were injected with HCC827 cells, which were transfected with anti-miR-22, followed by the treatment of BPI-20...

متن کامل

Rapamycin downregulates thymidylate synthase and potentiates the activity of pemetrexed in non-small cell lung cancer

Non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancer cases, and almost half of newly diagnosed patients have metastatic disease. Pemetrexed is a widely used drug for NSCLC and inhibits several folate-dependent enzymes including thymidylate synthase (TS). Increased expression of TS confers resistance to pemetrexed in vitro and predicts poor response to pemetrexed. Rapamycin is a...

متن کامل

Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography.

Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) for early measureme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017